Researchers develop platform to control qubits in silicon defects for quantum communications

The dream of a quantum internet, one capable of unprecedented levels of security and computational power, is tantalizingly close. Making this dream a reality would be significantly more feasible if we could harness existing telecommunications technologies and infrastructure. Recently, researchers have made significant strides in this direction by exploring defects in silicon—a ubiquitous semiconductor material—as … Read more

New technique enables on-demand creation of qubits in silicon with atomic precision

Quantum computers have the potential to solve complex problems in human health, drug discovery, and artificial intelligence millions of times faster than some of the world’s fastest supercomputers. A network of quantum computers could advance these discoveries even faster. But before that can happen, the computer industry will need a reliable way to string together … Read more

Groundbreaking terahertz source pushes limits to ionize matter

Terahertz waves, typically known as non-ionizing radiation, have now been pushed to new limits where they can behave as ionizing radiation under specific conditions. A groundbreaking advancement by a collaborative team of scientists from Korea and the U.S. has led to the creation of the most intense terahertz pulses ever recorded. These pulses are powerful … Read more

Experimental evidence of parity anomaly in topological insulator material

Experimental and theoretical physicists from the Würzburg Institute for Topological Insulators have observed a re-entrant quantum Hall effect in a mercury telluride device and have identified it as a signature of parity anomaly. Topological insulators are materials that can conduct electricity, but only on their surface or edges. No current flows inside them. They are … Read more

New design framework paves the way for high-performance LWIR meta-optics

Long-wavelength infrared (LWIR) imaging holds critical significance across many applications, from consumer electronics to defense and national security. It finds applications in night vision, remote sensing, and long-range imaging. However, the conventional refractive lenses employed in these imaging systems are bulky and heavy, which is undesirable for almost all applications. Compounding this issue is the … Read more

New technique makes smaller, faster chips possible for all manufacturers

Advancing semiconductor chip technology hinges on a crucial obstacle: crafting smaller, more efficient electronic components. Nowhere is this challenge more apparent than in lithography, the process central to creating intricate patterns on semiconductor wafers for chip production. Lithography relies on photomasks, templates that imprint patterns onto semiconductor wafers. Industry constantly seeks methods to enhance resolution … Read more