Researchers control quantum states with spin-polarized currents

Researchers at ETH Zurich have achieved a significant breakthrough in quantum physics by demonstrating that quantum states of single electron spins can be controlled using spin-polarized electron currents. This pioneering method holds potential for future applications in electronic circuit elements, potentially revolutionizing data storage and processing. The Spin of Electrons Electrons possess an intrinsic angular … Read more

Groundbreaking terahertz source pushes limits to ionize matter

Terahertz waves, typically known as non-ionizing radiation, have now been pushed to new limits where they can behave as ionizing radiation under specific conditions. A groundbreaking advancement by a collaborative team of scientists from Korea and the U.S. has led to the creation of the most intense terahertz pulses ever recorded. These pulses are powerful … Read more

Scientists achieve targeted laser excitation of thorium nuclei, paving way for advanced clocks and fundamental physics studies

Physicists have been hoping for this moment for a long time: For many years, scientists all around the world have been searching for a very specific state of thorium atomic nuclei that promises revolutionary technological applications. It could be used, for example, to build a nuclear clock that could measure time more precisely than the … Read more

Zap energy’s sheared-flow Z-pinch achieves 1-3 keV electron temperatures in FuZE plasma

In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated the ability to make a thermal fusion plasma with electron temperatures hotter than 10 million degrees Celsius, roughly the temperature of the core of the sun. Zap Energy’s unique approach, known as a sheared-flow-stabilized Z pinch, has now … Read more

Magnetic field fingerprint found in quark-gluon plasma

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, provides the first direct evidence of the imprint left by what may be the universe’s most powerful magnetic fields on “deconfined” nuclear matter. The evidence comes from measuring … Read more