Researchers control quantum states with spin-polarized currents

Researchers at ETH Zurich have achieved a significant breakthrough in quantum physics by demonstrating that quantum states of single electron spins can be controlled using spin-polarized electron currents. This pioneering method holds potential for future applications in electronic circuit elements, potentially revolutionizing data storage and processing. The Spin of Electrons Electrons possess an intrinsic angular … Read more

Study provides evidence of Earth’s inner core slowing down

University of Southern California scientists have proven that the Earth’s inner core is backtracking—slowing down—in relation to the planet’s surface, as shown in new research published in Nature. Movement of the inner core has been debated by the scientific community for two decades, with some research indicating that the inner core rotates faster than the … Read more

Scientists discover slowest-spinning neutron star yet

Australian scientists from the University of Sydney and Australia’s national science agency, CSIRO, have detected what is likely a neutron star spinning slower than any other ever measured. No other radio-emitting neutron star, out of the more than 3,000 discovered so far, has been discovered rotating so slowly. The results are published in Nature Astronomy. Lead author Dr. … Read more

Magnetic quivers provide geometric description of quantum vacua in supersymmetric QFTs

A simple concept of decay and fission of “magnetic quivers” helps to clarify complex quantum physics and mathematical structures. An international research team led by Marcus Sperling, a project leader at the Faculty of Physics, University of Vienna, has sparked interest in the scientific community with pioneering results in quantum physics. In their current study, … Read more

Groundbreaking terahertz source pushes limits to ionize matter

Terahertz waves, typically known as non-ionizing radiation, have now been pushed to new limits where they can behave as ionizing radiation under specific conditions. A groundbreaking advancement by a collaborative team of scientists from Korea and the U.S. has led to the creation of the most intense terahertz pulses ever recorded. These pulses are powerful … Read more

Adjustable filter paves the way for next-gen wireless communication

In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn’t figure out how to prevent its signals from interfering with those of GPS systems. Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent … Read more

How brain activation affects behavior

Our brains are made of tens of billions of nerve cells called neurons. These cells communicate with each other through biomolecules called neurotransmitters. Serotonin, a type of neurotransmitter, is produced by serotonin neurons in our brains and influences many of our behavioral and cognitive functions such as memory, sleep, and mood. Using mice, scientists at … Read more

Harvard-led review examines progress in majorana research for quantum computing

Named after an Italian theoretical physicist, Majoranas are complex quasiparticles that could be the key to building next-generation quantum computing systems. Most materials contain many electrons, each of which has a negative charge and a type of intrinsic quantum momentum known as spin. Interactions between electrons in some materials can produce emergent particles, or particles … Read more

Stable magnetic skyrmion bundles achieved at room temperature without external fields

Recently, the research team led by Prof. Du Haifeng from the High Magnetic Field laboratory at Hefei Institutes of Physical Science of the Chinese Academy of Sciences achieved stable magnetic bundles at room temperature without the need for any external magnetic field. Their work is published in Nature Communications. Topological magnetic structures are a type of spin arrangement … Read more

Prototype sensor uses laser light to detect errors in MRI scans

Hvidovre Hospital has the world’s first prototype of a sensor capable of detecting errors in MRI scans using laser light and gas. The new sensor, developed by a young researcher at the University of Copenhagen and Hvidovre Hospital, can thereby do what is impossible for current electrical sensors—and hopefully pave the way for MRI scans … Read more

Ryugu asteroid samples offer new insights into space weathering and early solar system

Analyzing samples retrieved from the asteroid Ryugu by the Japanese Space Agency’s Hayabusa2 spacecraft has revealed new insights into the magnetic and physical bombardment environment of interplanetary space. The results of the study, carried out by Professor Yuki Kimura at Hokkaido University and co-workers at 13 other institutions in Japan, are published in the journal … Read more

Pulsars: Cosmic Lighthouses

Pulsars are cosmic lighthouses, beacons of intense radiation and magnetic fields that emit beams of light and other forms of electromagnetic radiation as they rotate rapidly. These exotic objects, often referred to as neutron stars, are the remnants of massive stars that have undergone supernova explosions. Pulsars were first discovered in 1967 by astrophysicist Jocelyn … Read more

Understanding Solar Flares and Space Weather

Solar flares are powerful bursts of energy and radiation that occur on the Sun’s surface, releasing vast amounts of electromagnetic radiation, energetic particles, and plasma into space. These solar eruptions are a fascinating yet potentially hazardous phenomenon that can impact Earth and our technology, leading to what is known as space weather. Understanding solar flares … Read more

Ultra-thin materials enable light polarization rotation for on-chip optical isolators

It has been known for centuries that light exhibits wave-like behavior in certain situations. Some materials are able to rotate the polarization, i.e. the direction of oscillation, of the light wave when the light passes through the material. This property is utilized in a central component of optical communication networks known as an “optical isolator” … Read more

First-principles calculations predict tunable quantum anomalous hall effect in heterostructures

The quantum anomalous Hall effect (QAHE) has unique advantages in topotronic applications, but realizing the QAHE with tunable magnetic and topological properties for building functional devices is still a key scientific challenge. Through first-principles calculations, researchers have predicted a candidate material that meets these requirements. The related work was recently published in the National Science Review under the title … Read more

Physicists achieve 50x more precise measurement of crucial value for neutrino mass

What is the mass of a neutrino at rest? This is one of the big unanswered questions in physics. Neutrinos play a central role in nature. A team led by Klaus Blaum, Director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now made an important contribution in “weighing” neutrinos as part of … Read more

First direct evidence of wigner electron crystal

Electrons—the infinitesimally small particles that are known to zip around atoms—continue to amaze scientists despite the more than a century that scientists have studied them. Now, physicists at Princeton University have pushed the boundaries of our understanding of these minute particles by visualizing, for the first time, direct evidence for what is known as the … Read more

Scientists achieve current-driven antiskyrmion motion at room temperature

Prof. Zhang Ying’s group from the Institute of Physics of the Chinese Academy of Sciences (CAS), in collaboration with domestic universities and the Los Alamos National Laboratory in the United States, has experimentally observed current-driven antiskyrmion sliding. Their work was published in Nature Materials on April 11. Magnetic (anti)skyrmions with topologically protected spin structures are promising as next-generation information … Read more

Artificial solid with switchable interactions exhibits topological effects in transport

In principle, one shouldn’t compare apples to oranges. However, in topology, which is a branch of mathematics, one must do just that. Apples and oranges, it turns out, are said to be topologically the same since they both lack a hole—in contrast to doughnuts or coffee cups, for instance, which both have one (the handle … Read more

Study links surface roughness to performance in superconducting radiofrequency cavities

With every new particle accelerator built for research, scientists have an opportunity to push the limits of discovery. But this is only true if new particle accelerators deliver the desired performance—no small feat in a world where each new machine is a first of its particular kind. At each project opportunity, researchers try to refine … Read more