Physicists unify description of non-perturbative quantum phenomena with “resurgence” framework

In the quantum world, processes can be separated into two distinct classes. One class, that of the so-called “perturbative” phenomena, is relatively easy to detect, both in an experiment and in a mathematical computation. Examples are plentiful: the light that atoms emit, the energy that solar cells produce, the states of qubits in a quantum … Read more

Researchers develop world’s first quantum-gas microscope for strontium atoms

Quantum physics requires high-precision sensing techniques to delve deeper into the microscopic properties of materials. From the analog quantum processors that have emerged recently, quantum-gas microscopes have proven to be powerful tools for understanding quantum systems at the atomic level. These devices produce images of quantum gases with very high resolution: They allow individual atoms … Read more

First direct evidence of wigner electron crystal

Electrons—the infinitesimally small particles that are known to zip around atoms—continue to amaze scientists despite the more than a century that scientists have studied them. Now, physicists at Princeton University have pushed the boundaries of our understanding of these minute particles by visualizing, for the first time, direct evidence for what is known as the … Read more

Researchers detect first experimental evidence of quantum barkhausen noise

Iron screws and other so-called ferromagnetic materials are made up of atoms with electrons that act like little magnets. Normally, the orientations of the magnets are aligned within one region of the material but are not aligned from one region to the next. Think of packs of tourists in Times Square pointing to different billboards … Read more

How do quantum fluctuations influence the behavior of subatomic particles?

Quantum fluctuations, a fundamental aspect of quantum mechanics, play a crucial role in shaping the behavior of subatomic particles. These fluctuations are inherent uncertainties in the properties of particles, arising from the principles of quantum mechanics. Understanding the influence of quantum fluctuations is essential for comprehending the dynamic and probabilistic nature of the quantum realm. … Read more

Can particles be in multiple places at once?

The concept that particles can be in multiple places at once is a fundamental aspect of quantum mechanics, and it challenges our classical intuition about the nature of reality. This phenomenon is encapsulated in the principle of superposition, a cornerstone of quantum theory. To understand this idea, we need to explore the foundational principles of … Read more

How does quantum tunneling work?

Quantum tunneling is a fascinating phenomenon in the realm of quantum mechanics, where particles exhibit the ability to traverse barriers that, according to classical physics, should be insurmountable. This quantum effect challenges our intuitive understanding of how particles move and interact, and it plays a crucial role in various natural processes, technological applications, and theoretical … Read more

Scientists use light to control molecular dissociation

In a groundbreaking achievement, researchers have made strides in the quantum mechanical control of chemical reactions by selectively exciting molecules with a combination of two extreme-ultraviolet light sources. This significant progress, spearheaded by the group of PD Dr. Christian Ott at the Max-Planck-Institut für Kernphysik in Heidelberg, Germany, involves the novel integration of high harmonic … Read more