Researchers control quantum states with spin-polarized currents

Researchers at ETH Zurich have achieved a significant breakthrough in quantum physics by demonstrating that quantum states of single electron spins can be controlled using spin-polarized electron currents. This pioneering method holds potential for future applications in electronic circuit elements, potentially revolutionizing data storage and processing. The Spin of Electrons Electrons possess an intrinsic angular … Read more

Physicists achieve breakthrough in quantum entanglement with top quarks

A team of physicists led by University of Rochester professor Regina Demina has made a groundbreaking discovery in the realm of quantum entanglement, an enigmatic phenomenon famously referred to by Albert Einstein as “spooky action at a distance.” Quantum entanglement involves the interlinked behavior of tiny particles that, once having interacted, can influence each other … Read more

New method for quieting the quantum world

One of the biggest challenges in quantum technology and quantum sensing is “noise”–seemingly random environmental disturbances that can disrupt the delicate quantum states of qubits, the fundamental units of quantum information. Looking deeper at this issue, JILA Associate Fellow and University of Colorado Boulder Physics Assistant Professor Shuo Sun collaborated with Andrés Montoya-Castillo, Assistant Professor … Read more

Scientists discover unforeseen vortex behavior in light particles

Vortices are a common physical phenomenon. You find them in the structure of galaxies, tornadoes and hurricanes, as well as in a cup of tea, or water as it drains from the bathtub. Normally, vortices are formed when very fast-flowing air, water or another substance encounters an area with a slower flow. They are characterized … Read more

Quantum system-on-chip architecture for large-scale quantum computing

Quantum computers hold the promise of solving extremely complex problems rapidly—tasks that could take the world’s most powerful supercomputers decades to crack. However, achieving such performance requires building a system with millions of interconnected qubits. The creation and control of such vast numbers of qubits in a hardware architecture is a formidable challenge that scientists … Read more

Researchers develop compact device for characterizing quantum photons

An increasing number of emerging quantum applications operate using optical technologies. Essentially, photons carry information at the speed of light and over long distances, making them good candidates for fast and secure communications and quantum computing. Many of these applications require photons that are identical (indistinguishable). When the photons are not identical, it can lead … Read more

New approach uses non-gaussian states to describe and control spin-boson systems in quantum devices

Many of today’s quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the “0” and the “1.” However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. In a new publication in Physical Review Letters, researchers in Amsterdam demonstrate … Read more

Scientists achieve chip-scale entangled photon source in silicon carbide

Quantum information science is truly fascinating—pairs of tiny particles can be entangled such that an operation on either one will affect them both even if they are physically separated. A seemingly magical process called teleportation can share information between different far-flung quantum systems. These different systems can be coupled using quantum processes to form quantum … Read more

Miniaturized quantum light detector paves way for scalable quantum technologies

Researchers at the University of Bristol have made an important breakthrough in scaling quantum technology by integrating the world’s tiniest quantum light detector onto a silicon chip. The paper, “A Bi-CMOS electronic photonic integrated circuit quantum light detector,” was published in Science Advances. A critical moment in unlocking the information age was when scientists and engineers … Read more

Harvard-led review examines progress in majorana research for quantum computing

Named after an Italian theoretical physicist, Majoranas are complex quasiparticles that could be the key to building next-generation quantum computing systems. Most materials contain many electrons, each of which has a negative charge and a type of intrinsic quantum momentum known as spin. Interactions between electrons in some materials can produce emergent particles, or particles … Read more

Researchers develop tunable nonreciprocal device for quantum computers

Scientists led by the University of Massachusetts Amherst have adapted a device called a microwave circulator for use in quantum computers, allowing them for the first time to precisely tune the exact degree of nonreciprocity between a qubit, the fundamental unit of quantum computing, and a microwave-resonant cavity. The ability to precisely tune the degree … Read more

Researchers discover new entropy rule for quantum entanglement transformations

Bartosz Regula, from the RIKEN Center for Quantum Computing, and Ludovico Lami, from the University of Amsterdam, have unveiled a groundbreaking discovery regarding the elusive nature of quantum entanglement. Their findings, rooted in probabilistic calculations, shed light on a long-hypothesized rule of entropy governing quantum entanglement, a phenomenon central to the potential power of future … Read more

Scientists achieve frequency-domain photon number-path entanglement

Scientists have introduced a form of quantum entanglement known as frequency-domain photon number-path entanglement. This advance in quantum physics involves an innovative tool called a frequency beam splitter, which has the unique ability to alter the frequency of individual photons with a 50% success rate. For years, the scientific community has delved into spatial-domain photon … Read more

Repulsive forces induce ferromagnetism in quantum active matter model

Researchers Kazuaki Takasan and Kyogo Kawaguchi of the University of Tokyo with Kyosuke Adachi of RIKEN, Japan, have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to … Read more

Efficient generation and control of entanglement in superconducting qubit arrays demonstrated

Entanglement is a fascinating phenomenon in the realm of quantum physics, where particles at the atomic level exhibit correlations that defy classical explanations. This unique aspect of quantum mechanics plays a pivotal role in understanding the behavior of quantum systems, particularly in the context of quantum computing. Quantum entanglement refers to the intricate correlation between … Read more

Researchers develop world’s first quantum-gas microscope for strontium atoms

Quantum physics requires high-precision sensing techniques to delve deeper into the microscopic properties of materials. From the analog quantum processors that have emerged recently, quantum-gas microscopes have proven to be powerful tools for understanding quantum systems at the atomic level. These devices produce images of quantum gases with very high resolution: They allow individual atoms … Read more

Scientists achieve multi-photon interference with less hardware

An international collaboration of researchers, led by Philip Walther at University of Vienna, have achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work published in Science Advances represents a notable advancement in optical quantum computing that paves the way … Read more

Tiny thermal sensors promise to supercharge quantum computers

Chasing ever-higher qubit counts in near-term quantum computers constantly demands new feats of engineering. Among the troublesome hurdles of this scaling-up race is refining how qubits are measured. Devices called parametric amplifiers are traditionally used to do these measurements. But as the name suggests, the device amplifies weak signals picked up from the qubits to … Read more

Quantum Mechanics: Mysteries of the Subatomic World

Quantum mechanics is one of the most profound and revolutionary theories in modern physics, unraveling the mysteries of the subatomic world and fundamentally transforming our understanding of matter, energy, and the fundamental forces of nature. Developed in the early 20th century through the works of pioneering physicists such as Max Planck, Albert Einstein, Niels Bohr, … Read more

Quantum Entanglement: A Journey into Non-locality

Quantum entanglement is a fascinating and perplexing phenomenon in the realm of quantum mechanics, challenging our classical intuitions about the nature of reality. It is a concept that has captured the imagination of scientists and the public alike, leading to deep philosophical discussions and groundbreaking technological advancements. This journey into non-locality takes us into the … Read more