Researchers develop platform to control qubits in silicon defects for quantum communications

The dream of a quantum internet, one capable of unprecedented levels of security and computational power, is tantalizingly close. Making this dream a reality would be significantly more feasible if we could harness existing telecommunications technologies and infrastructure. Recently, researchers have made significant strides in this direction by exploring defects in silicon—a ubiquitous semiconductor material—as … Read more

New technique enables on-demand creation of qubits in silicon with atomic precision

Quantum computers have the potential to solve complex problems in human health, drug discovery, and artificial intelligence millions of times faster than some of the world’s fastest supercomputers. A network of quantum computers could advance these discoveries even faster. But before that can happen, the computer industry will need a reliable way to string together … Read more

Quantum system-on-chip architecture for large-scale quantum computing

Quantum computers hold the promise of solving extremely complex problems rapidly—tasks that could take the world’s most powerful supercomputers decades to crack. However, achieving such performance requires building a system with millions of interconnected qubits. The creation and control of such vast numbers of qubits in a hardware architecture is a formidable challenge that scientists … Read more

Advancements in thermophotovoltaic cells edge closer to grid-scale applications

Researchers at the University of Michigan have made significant strides in the efficiency of devices that convert heat into electricity, pushing these technologies closer to practical use on the electrical grid. These developments, which include reaching near-theoretical maximum efficiencies, could revolutionize how we store and utilize renewable energy. Harnessing Heat for Energy Storage The innovation … Read more

Engineers develop world-record microwave squeezer for dark matter detection

UNSW quantum engineers have developed a new amplifier that could help other scientists search for elusive dark matter particles. Imagine throwing a ball. You’d expect science to be able to work out its exact speed and location at any given moment, right? Well, the theory of quantum mechanics says you can’t actually know both with … Read more

Single-shot, complete polarization imaging achieved with metasurfaces

Think of all the information we get based on how an object interacts with wavelengths of light—aka color. Color can tell us if food is safe to eat or if a piece of metal is hot. Color is an important diagnostic tool in medicine, helping practitioners diagnose diseased tissue, inflammation, or problems in blood flow. … Read more

Researchers develop 2D material for high-precision light control in silicon photonics

Responding to the increasing demand for efficient, tunable optical materials capable of precise light modulation to create greater bandwidth in communication networks and advanced optical systems, a team of researchers at NYU Abu Dhabi’s Photonics Research Lab (PRL) have developed a novel, two-dimensional (2D) material capable of manipulating light with exceptional precision and minimal loss. … Read more

Physicists discover novel “hybrid topology” in elemental arsenic crystal

Physicists have observed a novel quantum effect termed “hybrid topology” in a crystalline material. This finding opens up a new range of possibilities for the development of efficient materials and technologies for next-generation quantum science and engineering. The finding, published in Nature, came when Princeton scientists discovered that an elemental solid crystal made of arsenic … Read more

Engineers develop ultra-compact chip for low-noise microwave generation

In a new Nature study, Columbia Engineering researchers have built a photonic chip that is able to produce high-quality, ultra-low-noise microwave signals using only a single laser. The compact device—a chip so small, it could fit on a sharp pencil point—results in the lowest microwave noise ever observed in an integrated photonics platform. The achievement … Read more

Scientists develop world-leading microwave photonic chip for ultrafast signal processing

A research team led by Professor Wang Cheng from the Department of Electrical Engineering (EE) at City University of Hong Kong (CityUHK) has developed a world-leading microwave photonic chip that is capable of performing ultrafast analog electronic signal processing and computation using optics. The chip, which is 1,000 times faster and consumes less energy than … Read more

Researchers achieve steering and acceleration in “accelerator on a chip” technology

Stanford researchers are getting closer to building a tiny electron accelerator based on “accelerator-on-a-chip” technology with broad potential applications in studying physics as well as medical and industrial uses. The researchers have demonstrated that a silicon dielectric laser accelerator, or DLA, can now both speed up and confine electrons, creating a focused beam of high-energy … Read more