Physicists achieve breakthrough in quantum entanglement with top quarks

A team of physicists led by University of Rochester professor Regina Demina has made a groundbreaking discovery in the realm of quantum entanglement, an enigmatic phenomenon famously referred to by Albert Einstein as “spooky action at a distance.” Quantum entanglement involves the interlinked behavior of tiny particles that, once having interacted, can influence each other … Read more

Scientists generate relativistic plasmas on Earth

An international team of scientists has developed a novel way to experimentally produce plasma ‘fireballs’ on Earth. Black holes and neutron stars are among the densest known objects in the universe. Within and around these extreme astrophysical environments exist plasmas, the fourth fundamental state of matter alongside solids, liquids, and gases. Specifically, the plasmas at … Read more

Magnetic quivers provide geometric description of quantum vacua in supersymmetric QFTs

A simple concept of decay and fission of “magnetic quivers” helps to clarify complex quantum physics and mathematical structures. An international research team led by Marcus Sperling, a project leader at the Faculty of Physics, University of Vienna, has sparked interest in the scientific community with pioneering results in quantum physics. In their current study, … Read more

FRIB facility measures mass of aluminum-22, potential proton halo candidate

In May 2022, the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU), launched its precision measurement program. Staff from FRIB’s Low Energy Beam and Ion Trap (LEBIT) facility take high-energy, rare-isotope beams generated at FRIB and cool them to a lower energy state. Afterward, the researchers measure specific particles’ masses at high … Read more

Researchers develop compact device for characterizing quantum photons

An increasing number of emerging quantum applications operate using optical technologies. Essentially, photons carry information at the speed of light and over long distances, making them good candidates for fast and secure communications and quantum computing. Many of these applications require photons that are identical (indistinguishable). When the photons are not identical, it can lead … Read more

Gravitational Waves: Ripples in Spacetime

Gravitational waves are ripples in the fabric of spacetime caused by the acceleration of massive objects, such as merging black holes or neutron stars. Predicted by Albert Einstein’s theory of general relativity in 1915, these waves were detected for the first time in 2015, marking a revolutionary breakthrough in astrophysics and opening a new window … Read more

Journey to the Edge of the Universe

Embarking on a journey to the edge of the universe is an awe-inspiring concept that captures the imagination and curiosity of humanity. While our current technology limits our physical exploration to the confines of our solar system, the realms beyond hold mysteries and wonders waiting to be discovered. Our journey begins on Earth, our home … Read more

Physicists achieve 50x more precise measurement of crucial value for neutrino mass

What is the mass of a neutrino at rest? This is one of the big unanswered questions in physics. Neutrinos play a central role in nature. A team led by Klaus Blaum, Director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now made an important contribution in “weighing” neutrinos as part of … Read more

The Theory of Relativity: Einstein’s Revolutionary Insights

Einstein’s Theory of Relativity revolutionized our understanding of space, time, and gravity. It’s a cornerstone of modern physics, with profound implications for everything from cosmology to the behavior of particles. Einstein’s journey towards the theory of relativity began with his groundbreaking work on the special theory of relativity, published in 1905. Building on the foundational … Read more

Quantum Entanglement: A Journey into Non-locality

Quantum entanglement is a fascinating and perplexing phenomenon in the realm of quantum mechanics, challenging our classical intuitions about the nature of reality. It is a concept that has captured the imagination of scientists and the public alike, leading to deep philosophical discussions and groundbreaking technological advancements. This journey into non-locality takes us into the … Read more

Luminiferous aether

Luminiferous aether, once proposed as the medium through which light waves propagate, represents a fascinating chapter in the history of physics. Despite being a prominent concept in the 19th century, subsequent scientific advancements have revealed its conceptual limitations and ultimately led to its dismissal. Exploring the origins, development, and eventual demise of the luminiferous aether … Read more

Researchers discover new class of plasma oscillations with diverse applications

Most people know about solids, liquids, and gases as the main three states of matter, but a fourth state of matter exists as well. Plasma—also known as ionized gas—is the most abundant, observable form of matter in our universe, found in the sun and other celestial bodies. Creating the hot mix of freely moving electrons … Read more

New technique controls twisting momentum (OAM) of light pulses

In day-to-day life, light seems intangible. We walk through it and create and extinguish it with the flip of a switch. But, like matter, light actually carries a little punch—it has momentum. Light constantly nudges things and can even be used to push spacecraft. Light can also spin objects if it carries orbital angular momentum … Read more

Researchers achieve steering and acceleration in “accelerator on a chip” technology

Stanford researchers are getting closer to building a tiny electron accelerator based on “accelerator-on-a-chip” technology with broad potential applications in studying physics as well as medical and industrial uses. The researchers have demonstrated that a silicon dielectric laser accelerator, or DLA, can now both speed up and confine electrons, creating a focused beam of high-energy … Read more

VLBI observations reveal PKS 2215+020 as a Blazar with Superluminal Jet Motion

European astronomers recently conducted extensive Very Long Baseline Interferometric (VLBI) observations on the radio jet structure of PKS 2215+020, a powerful quasar. The acquired VLBI data yielded crucial insights into the characteristics of this jet, indicating that PKS 2215+020 exhibits traits typical of a blazar. These findings, unveiled on February 17 in the Universe journal, … Read more

Magnetic field fingerprint found in quark-gluon plasma

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, provides the first direct evidence of the imprint left by what may be the universe’s most powerful magnetic fields on “deconfined” nuclear matter. The evidence comes from measuring … Read more