Magnetic quivers provide geometric description of quantum vacua in supersymmetric QFTs

A simple concept of decay and fission of “magnetic quivers” helps to clarify complex quantum physics and mathematical structures. An international research team led by Marcus Sperling, a project leader at the Faculty of Physics, University of Vienna, has sparked interest in the scientific community with pioneering results in quantum physics. In their current study, … Read more

New study demonstrates momentum-exchange interaction to overcome atomic recoil

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in the opposite direction, making it difficult to measure the position and momentum of the atom precisely. This recoil can have big implications for quantum sensing, … Read more

Researchers discover new entropy rule for quantum entanglement transformations

Bartosz Regula, from the RIKEN Center for Quantum Computing, and Ludovico Lami, from the University of Amsterdam, have unveiled a groundbreaking discovery regarding the elusive nature of quantum entanglement. Their findings, rooted in probabilistic calculations, shed light on a long-hypothesized rule of entropy governing quantum entanglement, a phenomenon central to the potential power of future … Read more

Artificial solid with switchable interactions exhibits topological effects in transport

In principle, one shouldn’t compare apples to oranges. However, in topology, which is a branch of mathematics, one must do just that. Apples and oranges, it turns out, are said to be topologically the same since they both lack a holeā€”in contrast to doughnuts or coffee cups, for instance, which both have one (the handle … Read more

New machine learning framework unveiled for understanding and predicting complex systems

In a recent development at Fudan University, a team of applied mathematicians and AI scientists has unveiled a cutting-edge machine learning framework designed to revolutionize the understanding and prediction of Hamiltonian systems. The paper is published in the journal Physical Review Research. Named the Hamiltonian Neural Koopman Operator (HNKO), this innovative framework integrates principles of … Read more

Study shows promise of VCSELs for solving ising problems

In our data-driven era, solving complex problems efficiently is crucial. However, traditional computers often struggle with this task when dealing with a large number of interacting variables, leading to inefficiencies such as the von Neumann bottleneck. A new type of collective state computing has emerged to address this issue by mapping these optimization problems onto … Read more