Magnetic quivers provide geometric description of quantum vacua in supersymmetric QFTs

A simple concept of decay and fission of “magnetic quivers” helps to clarify complex quantum physics and mathematical structures. An international research team led by Marcus Sperling, a project leader at the Faculty of Physics, University of Vienna, has sparked interest in the scientific community with pioneering results in quantum physics. In their current study, … Read more

Scientists achieve targeted laser excitation of thorium nuclei, paving way for advanced clocks and fundamental physics studies

Physicists have been hoping for this moment for a long time: For many years, scientists all around the world have been searching for a very specific state of thorium atomic nuclei that promises revolutionary technological applications. It could be used, for example, to build a nuclear clock that could measure time more precisely than the … Read more

Physicists unify description of non-perturbative quantum phenomena with “resurgence” framework

In the quantum world, processes can be separated into two distinct classes. One class, that of the so-called “perturbative” phenomena, is relatively easy to detect, both in an experiment and in a mathematical computation. Examples are plentiful: the light that atoms emit, the energy that solar cells produce, the states of qubits in a quantum … Read more

The Origin and Evolution of the Universe

The origin and evolution of the universe have fascinated humanity for millennia. Modern scientific theories, such as the Big Bang theory, provide a framework for understanding these cosmic processes. The universe began as an unimaginably dense and hot singularity around 13.8 billion years ago, expanding rapidly and cooling over time. Through cosmic inflation, galaxies, stars, … Read more

Cosmic Rays: High-Energy Particles from Space

Cosmic rays are high-energy particles originating from outer space that continuously bombard the Earth and other celestial bodies. These particles, which include protons, electrons, and atomic nuclei, carry immense amounts of energy and play a significant role in shaping the universe and influencing various processes on Earth. The study of cosmic rays encompasses a wide … Read more

Pulsars: Cosmic Lighthouses

Pulsars are cosmic lighthouses, beacons of intense radiation and magnetic fields that emit beams of light and other forms of electromagnetic radiation as they rotate rapidly. These exotic objects, often referred to as neutron stars, are the remnants of massive stars that have undergone supernova explosions. Pulsars were first discovered in 1967 by astrophysicist Jocelyn … Read more

The Standard Model of Particle Physics: Unveiling Fundamental Forces

The Standard Model of Particle Physics represents one of modern physics’ crowning achievements, offering a comprehensive framework for understanding the fundamental forces and building blocks of the universe. This model has been developed through decades of experimental discoveries and theoretical advancements, culminating in a description of particles and forces that govern the behavior of matter … Read more

Periodic Table

The periodic table is a tabular arrangement of chemical elements, organized by their atomic number, electron configuration, and recurring chemical properties. It provides a systematic way to categorize and understand the behavior of elements based on their shared characteristics. Dmitri Mendeleev is credited with developing the first periodic table in 1869, arranging elements by their … Read more

Improved neutron mirrors boost efficiency of material analysis at ESS

Improved neutron mirrors can increase the efficiency of material analysis in neutron sources such as the European Spallation Source. The improved mirror has been developed by researchers at Linköping University by coating a silicon plate with extremely thin layers of iron and silicon mixed with boron carbide. Their study has been published in the journal … Read more

Jefferson Lab achieves record-breaking precision in electron beam polarimetry

Scientists are getting a more detailed look than ever before at the electrons they use in precision experiments. Nuclear physicists with the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have shattered a nearly 30-year-old record for the measurement of parallel spin within an electron beam—or electron beam polarimetry, for short. The achievement sets … Read more

Neutron star merger confirmed as source of second-brightest gamma-ray burst

A multinational collaboration of astronomers and astrophysicists recently unveiled groundbreaking evidence surrounding the luminous gamma-ray burst GRB 230307A, which graced the cosmos with its brilliance last year. Contrary to earlier assumptions attributing such bursts to the demise of massive stars, the team’s findings, published in the esteemed journal Nature, indicate that this particular spectacle emanated … Read more

Magnetic field fingerprint found in quark-gluon plasma

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, provides the first direct evidence of the imprint left by what may be the universe’s most powerful magnetic fields on “deconfined” nuclear matter. The evidence comes from measuring … Read more