Physicists discover novel “hybrid topology” in elemental arsenic crystal

Physicists have observed a novel quantum effect termed “hybrid topology” in a crystalline material. This finding opens up a new range of possibilities for the development of efficient materials and technologies for next-generation quantum science and engineering. The finding, published in Nature, came when Princeton scientists discovered that an elemental solid crystal made of arsenic … Read more

Experimental evidence of parity anomaly in topological insulator material

Experimental and theoretical physicists from the Würzburg Institute for Topological Insulators have observed a re-entrant quantum Hall effect in a mercury telluride device and have identified it as a signature of parity anomaly. Topological insulators are materials that can conduct electricity, but only on their surface or edges. No current flows inside them. They are … Read more

Long-range quantum coherence observed in bismuth bromide topological insulator

In a groundbreaking experiment, physicists have recently observed long-range quantum coherence effects stemming from Aharonov-Bohm interference in a device based on topological insulators. This landmark discovery opens a new frontier in the realm of topological quantum physics and engineering, promising transformative possibilities for future technological development and our understanding of quantum information science. Published in … Read more